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Sound event detection

What kind of sounds do you imagine listening in each scene ?



Training SED models

Weak supervision: Audio tags

Strong supervision: Audio events and their start and end time



Sound event detection in present
Has progressed in past years due to larger datasets

However, sound event detection rarely explored in “in the wild” and noisy settings

Noise in pipeline 

SED used for predictive maintenance
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Datasets Real world



Sound event detection in present
Has progressed in past years due to larger datasets

However, sound event detection rarely explored in “in the wild” and noisy settings

Noise in pipeline 

Inference in real-life noisy environments

New applications have limited data
SED used for unobstructive healthcare



How to improve SED in noisy settings?

Learning better representations/feature detectors for each audio event from such 
noisy training data

Improving pooling method used in these networks

Self-supervised auxiliary tasks

Two step attention pooling



Proposed architecture



Proposed architecture
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Experiments
We form a noisy dataset by mixing:

- DCASE 2019 Task 1 of Acoustic Scene Classification (ASC)
- DCASE 2018 Task 2 of General purpose Audio tagging

The DCASE 2019 Task 1 provides background sounds (noise) recorded from a variety of real world scenes 
in which the sounds from DCASE 2019 Task 2 are randomly embedded



Experiments
We form a noisy dataset by mixing:

- DCASE 2019 Task 1 of Acoustic Scene Classification (ASC)
- DCASE 2018 Task 2 of General purpose Audio tagging

The DCASE 2019 Task 1 provides background sounds (noise) recorded from a variety of real world scenes 
in which the sounds from DCASE 2019 Task 2 are randomly embedded

Results in 32000 audio clips with 8000 audio clips for each 20,10,0 dB SNR

SNR 20 dB SNR 10 dB SNR 0 dB



Results

Performance across different SNR

The proposed architecture beats existing benchmark by 
- SNR 20 dB: 5.9%, 
- SNR 10 dB: 12.8%
- SNR 0 dB: 22.3%



Results

Ablation study of components

Varying alpha:
- ⍺ = 0 → two step attention pooling: 5.2%, 10.2%, 21.4% on 20, 10, 0 dB SNR 
- ⍺ = 1e-3 → two step attention pooling and aux task: 0.7%, 2.3%, 0.7 % on 20, 10, 0 dB SNR
- ⍺ = 1e-2 → two step attention pooling : decreased



Results

Performance on different type of sound event



Results

Performance on different type of sound event

Some key insights:

- Proposed model outperforms other models on almost all audio events across different SNR 

- Most improvement observed on events like `Bass drum’, `bus’, `double bass’, `cowbell’

- Atrous model outperforms proposed on `gong’, `chime’, `meow’. Indicates atrous models is 
better at detecting audio events whose energy is spread wide in the temporal domain



Results

Two step attention pooling visualisation

Input audio mel spectrogram

Aux. decoder output

Attention weights-f1

Attention weights-f2

Attention weights-f3

Output of 1st step attention 
pooling

Attention weights-t

Output of 2nd step attention 
pooling



Conclusion
Two step attention pooling helps in learning features to better discriminate 
between sound events

Self-supervised auxiliary tasks can improve network performance in noisy settings
Appropriate auxiliary task: reconstruction of input T-F representation

Right contribution of auxiliary task

Most benefit in SNR 10 dB

Both in clean and noisy settings

Makes training stable

Improves localisation of the audio event in T-F



Thank you for listening
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Sound event detection in wild

Training data does not represent inference distribution
Datasets Real world

Applications with lot of background noise

Current sound event detection models lose performance in noisy setting
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