Improving weakly supervised sound event detection with self-supervised auxiliary tasks

Soham	Bhiksha	Rita
Deshmukh ¹	Raj ²	Singh ²

¹ Microsoft ² Carnegie Mellon University The work was done at Carnegie Mellon University

Sound event detection

What kind of sounds do you imagine listening in each scene ?

Training SED models

Strong supervision: Audio events and their start and end time

Weak supervision: Audio tags

Sound event detection in present

Has progressed in past years due to larger datasets

However, sound event detection rarely explored in "in the wild" and noisy settings

Noise in pipeline

SED used for predictive maintenance

Sound event detection in present

Has progressed in past years due to larger datasets

However, sound event detection rarely explored in "in the wild" and noisy settings

Noise in pipeline

Inference in real-life noisy environments

Sound event detection in present

Has progressed in past years due to larger datasets

However, sound event detection rarely explored in "in the wild" and noisy settings

Noise in pipeline

Inference in real-life noisy environments

New applications have limited data

SED used for unobstructive healthcare

How to improve SED in noisy settings?

Learning better representations/feature detectors for each audio event from such noisy training data

Self-supervised auxiliary tasks

Improving pooling method used in these networks

Two step attention pooling

Two step attention pooling

Proposed architecture

Proposed architecture

 $g_{1} : \hat{X} \mapsto Z \qquad g_{2} : Z \mapsto P$ $g_{1}(.) = g_{3}(.) = g(.)$ $g_{4}^{-1}(g(.)) = g^{-1}(g_{4}(.)) = I$ $\min_{W} \mathcal{L}_{1}(P, y | w, w_{4}) + \alpha \mathcal{L}_{2}(\{\bar{x}_{i}\}_{i=1}^{T}, \{\hat{x}_{i}\}_{i=1}^{T} | w, w_{2})$

Two step attention pooling

Experiments

We form a noisy dataset by mixing:

- DCASE 2019 Task 1 of Acoustic Scene Classification (ASC)
- DCASE 2018 Task 2 of General purpose Audio tagging

The DCASE 2019 Task 1 provides background sounds (noise) recorded from a variety of real world scenes in which the sounds from DCASE 2019 Task 2 are randomly embedded

Experiments

We form a noisy dataset by mixing:

- DCASE 2019 Task 1 of Acoustic Scene Classification (ASC)
- DCASE 2018 Task 2 of General purpose Audio tagging

The DCASE 2019 Task 1 provides background sounds (noise) recorded from a variety of real world scenes in which the sounds from DCASE 2019 Task 2 are randomly embedded

Results in 32000 audio clips with 8000 audio clips for each 20,10,0 dB SNR

Performance across different SNR

Net	twork			SNR 20 dB			SNR 10 dB		SNR 0 dB			
encoder	pooling	aux.	micro-p	macro-p	AUC	micro-p	macro-p	AUC	micro-P	macro-p	AUC	
VGGish	GAP	X	0.5067	0.6127	0.9338	0.4291	0.5390	0.9144	0.3295	0.4093	0.8694	
VGGish	GMP	X	0.5390	0.5186	0.8497	0.5263	0.5023	0.8422	0.4640	0.4441	0.8189	
VGGish	GWRP	×	0.7018	0.7522	0.9362	0.6538	0.7129	0.9265	0.5285	0.6084	0.8985	
VGGish (dil.)	AP	X	0.7391	0.7586	0.9279	0.6740	0.7404	0.9211	0.5714	0.6341	0.9014	
VGGish	2AP	1	0.7829	0.7645	0.9390	0.7603	0.7486	0.9343	0.6986	0.6892	0.9177	

The proposed architecture beats existing benchmark by

- SNR 20 dB: 5.9%,
- SNR 10 dB: 12.8%
- SNR 0 dB: 22.3%

Ablation study of components

$$\min_{W} \mathcal{L}_1(P, y | w, w_4) + \alpha \mathcal{L}_2(\{\bar{x}_i\}_{i=1}^T, \{\hat{x}_i\}_{i=1}^T | w, w_2)$$

auxiliary task	SNR 20 dB	SNR 10 dB	SNR 0 dB
$\alpha = 0.0$	0.7772	0.7430	0.6937
$\alpha = 0.001$	0.7829	0.7603	0.6986
$\alpha = 0.1$	0.7637	0.7428	0.6792

Varying alpha:

- $\alpha = 0 \rightarrow$ two step attention pooling: 5.2%, 10.2%, 21.4% on 20, 10, 0 dB SNR
- α = 1e-3 \rightarrow two step attention pooling and aux task: 0.7%, 2.3%, 0.7 % on 20, 10, 0 dB SNR
- α = 1e-2 \rightarrow two step attention pooling : decreased

Performance on different type of sound event

Weakly Labelled SED audio event specific results for snr = 0

Modal	Guit	Appl	Ba	Bass	Bur	Due	Cel	Chi	Clar	Comp.	Cou	Cow	Double	Dra	Elec.	Fa	Finger	Fire	Flu	Glock
Model	ar	ause	rk	drum	ping	Dus	lo	me	inet	keyb.	gh	bell	bass	wer	piano	rt	snapp.	work	te	ensp.
GAP	0.549	0.848	0.477	0.161	0.508	0.168	0.361	0.626	0.289	0.502	0.384	0.447	0.199	0.212	0.251	0.386	0.409	0.36	0.286	0.539
GMP	0.517	0.539	0.53	0.535	0.426	0.145	0.378	0.406	0.466	0.356	0.208	0.872	0.275	0.077	0.31	0.393	0.623	0.322	0.384	0.889
GWRP	0.728	0.933	0.742	0.242	0.741	0.254	0.511	0.766	0.449	0.587	0.629	0.768	0.262	0.296	0.349	0.652	0.514	0.517	0.418	0.893
AtrousAP	0.72	0.956	0.782	0.169	0.804	0.2	0.562	0.767	0.502	0.685	0.756	0.781	0.17	0.214	0.187	0.691	0.734	0.566	0.318	0.902
2APAE	0.869	0.942	0.865	0.82	0.849	0.572	0.71	0.633	0.542	0.59	0.628	0.921	0.579	0.386	0.552	0.569	0.907	0.579	0.473	0.907
2APAE e-3	0.792	0.951	0.839	0.812	0.874	0.627	0.669	0.606	0.503	0.699	0.631	0.94	0.59	0.403	0.453	0.562	0.941	0.565	0.535	0.807
2APAE e-2	0.759	0.943	0.787	0.789	0.81	0.605	0.677	0.637	0.485	0.68	0.632	0.916	0.563	0.377	0.522	0.589	0.867	0.61	0.522	0.853
-																				
Gong	Gun	Harm	Hi-	Keys	Kno	Laugh	Me	Micro.	Oboe	Saxo	Scis	Shat	Snare	Squ	Tamb	Tear	Tele	Trum	Violin	Writ
Cong	shot	onica	hat	Reys	ck	ter	ow	oven	Oboc	phone	sors	ter	drum	eak	ourine	ing	phone	pet	fiddle	ing
0.34	0.473	0.698	0.717	0.384	0.42	0.396	0.3	0.193	0.288	0.477	0.456	0.527	0.344	0.174	0.512	0.357	0.272	0.514	0.474	0.377
0.416	0.43	0.375	0.887	0.493	0.52	0.406	0.314	0.215	0.485	0.566	0.344	0.416	0.462	0.077	0.911	0.39	0.345	0.569	0.674	0.192

WEAKLY LABELLED SED AUDIO EVENT SPECIFIC RESULTS FOR SNR = 10

Model	Guit ar	Appl ause	Ba rk	Bass drum	Bur ping	Bus	Cel lo	Chi me	Clar inet	Comp. keyb.	Cou gh	Cow bell	Double bass	Dra wer	Elec. piano	Fa rt	Finger snapp.	Fire work	Flu te	Glock ensp.
GAP	0.69	0.974	0.691	0.238	0.642	0.373	0.57	0.763	0.372	0.648	0.529	0.507	0.394	0.438	0.447	0.573	0.461	0.481	0.391	0.644
GMP	0.604	0.691	0.626	0.732	0.63	0.163	0.494	0.508	0.581	0.399	0.284	0.862	0.421	0.083	0.414	0.267	0.667	0.386	0.528	0.881
GWRP	0.777	0.969	0.868	0.454	0.873	0.49	0.685	0.809	0 597	0.668	0.766	0.842	0.512	0.553	0 527	0.665	0.567	0.643	0.552	0.921

WEAKLY LABELLED SED AUDIO EVENT SPECIFIC RESULTS FOR SNR = 20

Model	Guit	Appl	Ba	Bass	Bur	Bue	Cel	Chi	Clar	Comp.	Cou	Cow	Double	Dra	Elec.	Fa	Finger	Fire	Flu	Glock
Woder	ar	ause	rk	drum	ping	Dus	lo	me	inet	keyb.	gh	bell	bass	wer	piano	rt	snapp.	work	te	ensp.
GAP	0.72	0.986	0.747	0.399	0.699	0.56	0.64	0.803	0.485	0.707	0.571	0.554	0.501	0.532	0.597	0.652	0.481	0.593	0.498	0.766
GMP	0.507	0.843	0.654	0.838	0.631	0.336	0.565	0.489	0.657	0.344	0.44	0.889	0.42	0.137	0.579	0.328	0.653	0.226	0.54	0.931
GWRP	0.83	0.986	0.922	0.529	0.869	0.649	0.727	0.813	0.657	0.728	0.742	0.875	0.696	0.626	0.627	0.7	0.636	0.722	0.697	0.934
AtrousAP	0.877	0.991	0.922	0.562	0.924	0.622	0.773	0.819	0.746	0.77	0.89	0.716	0.573	0.708	0.703	0.806	0.746	0.755	0.745	0.957
2APAE	0.903	0.969	0.911	0.936	0.959	0.761	0.787	0.642	0.666	0.736	0.605	0.936	0.825	0.592	0.665	0.589	0.956	0.681	0.834	0.913

Performance on different type of sound event

model	aux.	bus	cowbell	gong	meow
Atrous + AP	×	0.2	0.781	0.692	0.583
VGGish + 2AP	X	0.572	0.921	0.643	0.483
VGGish + 2AP	1	0.627	0.94	0.663	0.532

Some key insights:

- Proposed model outperforms other models on almost all audio events across different SNR
- Most improvement observed on events like `Bass drum', `bus', `double bass', `cowbell'
- Atrous model outperforms proposed on `gong', `chime', `meow'. Indicates atrous models is better at detecting audio events whose energy is spread wide in the temporal domain

Input audio mel spectrogram

Aux. decoder output

Attention weights-f1

Attention weights-f2

Attention weights-f3

Output of 1st step attention pooling

Attention weights-t

Output of 2nd step attention pooling

Two step attention pooling visualisation

Conclusion

Two step attention pooling helps in learning features to better discriminate between sound events

- Both in clean and noisy settings
- Makes training stable
- Improves localisation of the audio event in T-F

Self-supervised auxiliary tasks can improve network performance in noisy settings Appropriate auxiliary task: reconstruction of input T-F representation Right contribution of auxiliary task Most benefit in SNR 10 dB

Thank you for listening

Soham	Bhiksha	Rita
Deshmukh ¹	Raj ²	Singh ²

¹ Microsoft ² Carnegie Mellon University The work was done at Carnegie Mellon University

References

[1] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley, "Detection and classification of acoustic scenes and events," IEEE Transactions on Multimedia, vol. 17, no. 10, pp. 1733–1746, 2015.

[2] E. C, akır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen, "Convolutional recurrent neural networks for poly-phonic sound event detection," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1291–1303, 2017.

[3] A. Mesaros, T. Heittola, and T. Virtanen, "Tut database for acoustic scene classification and sound event detection," in 2016 24th European Signal Processing Conference (EUSIPCO), 2016, pp. 1128–1132.

[4] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, "Audio set: An ontology and human-labeled dataset for audio events," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 776–780.

[5] A. Kumar and B. Raj, "Audio event detection using weakly labeled data," in Proceedings of the 24th ACM International Conference on Multimedia, ser. MM '16. New York, NY, USA: Association for Computing Machinery, 2016, p. 1038–1047. [Online]. Available: https://doi.org/10.1145/2964284.2964310

[6] S.-Y. Tseng, J. Li, Y. Wang, F. Metze, J. Szurley, and S. Das, "Multiple instance deep learning for weakly supervised small-footprint audio event detection," in Proc. Interspeech 2018, 2018, pp. 3279–3283. [Online]. Available: http://dx.doi.org/10. 21437/Interspeech.2018-1120 [8] A. Kumar and B. Raj, "Deep cnn framework for audio event recognition using weakly labeled web data," 2017, arXiv preprint, https://arxiv.org/abs/1707.02530.

[7] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, "Large-scale weakly supervised audio classification using gated convolutional neural network," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 121–125.
[10] Q. Kong, Y. Xu, I. Sobieraj, W. Wang, and M. D. Plumbley, "Sound event detection and time–frequency segmentation from weakly labelled data," IEEE/ACM Trans. Audio, Speech and Lang. Proc., vol. 27, no. 4, p. 777–787, Apr. 2019. [Online]. Available: https://doi.org/10.1109/TASLP.2019.2895254

[8 B. McFee, J. Salamon, and J. P. Bello, "Adaptive pooling operators for weakly labeled sound event detection," IEEE/ACM Trans. Audio, Speech and Lang. Proc., vol. 26, no. 11, p. 2180–2193, Nov. 2018. [Online]. Available: https://doi.org/10. 1109/TASLP.2018.2858559

[9] T. Su, J. Liu, and Y. Yang, "Weakly-supervised audio event detection using event-specific gaussian filters and fully convolutional networks," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 791–795.

References

[10] Z. Ren, Q. Kong, J. Han, M. D. Plumbley, and B. W. Schuller, "Attention-based atrous convolutional neural networks: Visualisation and understanding perspectives of acoustic scenes," in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 56–60.

[11] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. Weiss, and K. Wilson, "Cnn architectures for large-scale audio classification," in International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017. [Online]. Available: https://arxiv.org/abs/1609.09430

[12 W. Xue, Y. Tong, C. Zhang, G.-H. Ding, X. He, and B. Zhou, "Sound event localization and detection based on multiple doa beamforming and multi-task learning," in INTERSPEECH, 2020.

[13] K. Imoto, N. Tonami, Y. Koizumi, M. Yasuda, R. Yamanishi, and Y. Yamashita, "Sound event detection by multitask learning of sound events and scenes with soft scene labels," ICASSP 2020- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 621–625, 2020.

[14] T. Lee, T. Gong, S. Padhy, A. Rouditchenko, and A. Ndirango, "Label-efficient audio classification through multitask learning and self-supervision," ArXiv, vol. abs/1910.12587, 2019.

[15] Y. Zhang and Q. Yang, "A survey on multi-task learning," 2018, preprint arXiv, https://arxiv.org/abs/1707.08114.

[16] N. Tonami, K. Imoto, M. Niitsuma, R. Yamanishi, and Y. Ya- mashita, "Joint analysis of acoustic events and scenes based on multitask learning," 2019 IEEE Workshop on Applications of Sig- nal Processing to Audio and Acoustics (WASPAA), pp. 338–342, 2019.

[17] H. L. Bear, I. Nolasco, and E. Benetos, "Towards joint sound scene and polyphonic sound event recognition," in INTER- SPEECH, 2019.

[18] E. M. Grais and M. D. Plumbley, "Single channel audio source separation using convolutional denoising autoencoders," in 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2017, pp. 1265–1269.

[19] D. Stowell and R. E. Turner, "Denoising without access to clean data using a partitioned autoencoder," 2015, preprint arXiv, https: //arxiv.org/abs/1509.05982.

[20] J. Baxter, "A bayesian/information theoretic model of learning to learn via multiple task sampling," in Machine Learning, 1997, pp. 7–39.

Sound event detection in wild

Applications with lot of background noise

Datasets

Real world

Training data does not represent inference distribution

Current sound event detection models lose performance in noisy setting

Sound event detection in wild

Applications with lot of background noise

Training data does not represent inference distribution Datasets Real world and event detection models lose performance in noisy setting