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Sound event detection

What kind of sounds do you imagine listening in each scene ?



Training SED models

Strong supervision: Audio events and their start and end time

Weak supervision: Audio tags
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Sound event detection in present
Has progressed in past years due to larger datasets

However, sound event detection rarely explored in “in the wild” and noisy settings

Noise in pipeline

SED used for predictive maintenance
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Sound event detection in present
Has progressed in past years due to larger datasets

However, sound event detection rarely explored in “in the wild” and noisy settings
Noise in pipeline

Inference in real-life noisy environments

New applications have limited data

SED used for unobstructive healthcare



How to improve SED in noisy settings?

Learning better representations/feature detectors for each audio event from such
noisy training data
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Proposed architecture

(A) Self-supervised learning architecture
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Proposed architecture

(A) Self-supervised learning architecture
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Experiments

We form a noisy dataset by mixing:
- DCASE 2019 Task 1 of Acoustic Scene Classification (ASC)
- DCASE 2018 Task 2 of General purpose Audio tagging

The DCASE 2019 Task 1 provides background sounds (noise) recorded from a variety of real world scenes
in which the sounds from DCASE 2019 Task 2 are randomly embedded
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SNR 20 dB SNR 10 dB SNR O dB

© 0 ©

Results in 32000 audio clips with 8000 audio clips for each 20,10,0 dB SNR



Results

Performance across different SNR

Network SNR 20 dB SNR 10 dB SNR 0 dB
encoder pooling ux. | micro-p | macro-p AUC micro-p | macro-p AUC micro-P | macro-p AUC
VGGish GAP X 0.5067 0.6127 | 0.9338 | 0.4291 0.5390 | 09144 | 0.3295 0.4093 | 0.8694
VGGish GMP X 0.5390 0.5186 | 0.8497 | 0.5263 0.5023 | 0.8422 | 0.4640 0.4441 0.8189
VGGish GWRP X 0.7018 0.7522 | 0.9362 | 0.6538 0.7129 | 0.9265 | 0.5285 0.6084 | 0.8985
VGGish (dil.) AP X 0.7391 0.7586 | 0.9279 | 0.6740 0.7404 | 09211 | 0.5714 0.6341 0.9014
VGGish 2AP v 0.7829 0.7645 | 0.9390 | 0.7603 0.7486 | 0.9343 | 0.6986 0.6892 | 0.9177

The proposed architecture beats existing benchmark by

- SNR 20 dB: 5.9%,
- SNR10dB: 12.8%

- SNROdB:22.3%




Results

Ablation study of components

rr‘}‘i/n L1(P,ylw, ws) + alo({Fi }ie1, {€i }ie1 |w, w)

auxiliary task | SNR20dB | SNR 10dB | SNROdB
a=0.0 077712 0.7430 0.6937
a =0.001 0.7829 0.7603 0.6986
a=0.1 0.7637 0.7428 0.6792

Varying alpha:
- o =0 — two step attention pooling: 5.2%, 10.2%, 21.4% on 20, 10, 0 dB SNR
- o = 1e-3 — two step attention pooling and aux task: 0.7%, 2.3%, 0.7 % on 20, 10, 0 dB SNR
- o = 1e-2 — two step attention pooling : decreased



Results

Performance on different type of sound event

WEAKLY LABELLED SED AUDIO EVENT SPECIFIC RESULTS FOR SNR =0

Model Guit Appl Ba Bass Bur Bus Cel Chi Clar Comp. Cou Cow Double Dra Elec. Fa Finger Fire Flu Glock
ar ause rk drum ping . lo me inet keyb. gh bell bass wer piano t snapp. work te ensp.
GAP 0.549 0.848 0477 0.161 0.508 0.168 0.361 0.626 0.289 0.502 0.384 0.447 0.199 0.212 0.251 0.386 0.409 036 0.286 0.539
GMP 0.517 0.539 0.53 0.535 0.426 0.145 0.378 0.406 0.466 0.356 0.208 0.872 0275 0.077 0.31 0.393 0.623 0322 0.384 0.889
GWRP 0.728 0.933 0.742 0.242 0.741 0.254 0.511 0.766 0.449 0.587 0.629 0.768 0.262 0.296 0.349 0.652 0514 0517 0418 0.893
AtrousAP 0.72 0.956 0.782 0.169 0.804 02 0.562 0.767 0.502 0.685 0.756 0.781 0.17 0.214 0.187 0.691 0.734 0.566 0.318 0.902
2APAE 0.869 0.942 0.865 0.82 0.849 0.572 0.71 0.633 0.542 059 0.628 0.921 0.579 0.386 0.552 0.569 0.907 0579 0473 0.907
2APAE e-3 0.792 0.951 0.839 0.812 0.874 0.627 0.669 0.606 0.503 0.699 0.631 0.94 0.59 0.403 0.453 0.562 0.941 0.565 0.535 0.807
2APAE e-2 0.759 0.943 0.787 0.789 0.81 0.605 0.677 0.637 0.485 0.68 0.632 0916 0.563 0.377 0.522 0.589 0.867 0.61 0.522 0.853
Gon Gun Harm Hi- Keii Kno Laugh Me Micro. Oboe Saxo Scis Shat Snare Squ Tamb Tear Tele Trum Violin Writ
8 shot onica hat Y ck ter ow oven phone sors ter drum eak ourine ing phone pet fiddle ing
034 0473 | 0.698 | 0717 | 0384 0.42 0.39 03 0.193 0288 | 0477 | 0436 | 0527 | 0344 | 0174 | 0512 0357 | 0272 | 0514 | 0474 | 0377
0416 043 0.375 0.887 0.493 0.52 0.406 0314 0215 0.485 0.566 0344 0416 0.462 0.077 0911 0.39 0.345 0.569 0.674 0.192
WEAKLY LABELLED SED AUDIO EVENT SPECIFIC RESULTS FOR SNR = 10
Model Guit Appl Ba Bass Bur Bus Cel Chi Clar Comp. Cou Cow Double Dra Elec. Fa Finger Fire Flu Glock
ar ause rk drum ping lo me inet keyb. gh bell bass wer piano i snapp. work te ensp.
GAP 0.69 0.974 0.691 0.238 0.642 0.373 0.57 0.763 0.372 0.648 0.529 0.507 0.394 0.438 0.447 0.573 0.461 0.481 0.391 0.644
GMP 0.604 0.691 0.626 0.732 0.63 0.163 0.494 0.508 0.581 0.399 0.284 0.862 0.421 0.083 0414 0.267 0.667 0.386 0.528 0.881
GWRP 0777 0069 0 RAR Nn4s4 NR73 049 NARS N RY 0597 0 ARR 0766 N R4 ns” 0353 ns?7 0 665 0 sA7 0 A43 0552 0921
WEAKLY LABELLED SED AUDIO EVENT SPECIFIC RESULTS FOR SNR = 20
Model Guit Appl Ba Bass Bur Bus Cel Chi Clar Comp. Cou Cow Double Dra Elec. Fa Finger Fire Flu Glock
ar ause rk drum ping ? lo me inet keyb. gh bell bass wer piano n snapp. work te ensp.
GAP 0.72 0.986 0.747 0.399 0.699 0.56 0.64 0.803 0.485 0.707 0.571 0.554 0.501 0.532 0.597 0.652 0.481 0.593 0.498 0.766
GMP 0.507 0.843 0.654 0.838 0.631 0.336 0.565 0.489 0.657 0.344 0.44 0.889 042 0.137 0.579 0.328 0.653 0.226 054 0.931
GWRP 0.83 0.986 0922 0.529 0.869 0.649 0.727 0.813 0.657 0.728 0.742 0.875 0.696 0.626 0.627 0.7 0.636 0.722 0.697 0.934
AtrousAP 0.877 0.991 0922 0.562 0.924 0.622 0.773 0.819 0.746 0.77 0.89 0.716 0.573 0.708 0.703 0.806 0.746 0.755 0.745 0.957
2APAE 0.903 0.969 0911 0.936 0.959 0.761 0.787 0.642 0.666 0.736 0.605 0.936 0.825 0.592 0.665 0.589 0.956 0.681 0.834 0913




Results

Performance on different type of sound event

model aux. | bus cowbell | gong meow
Atrous + AP X 0.2 0.781 0.692 | 0.583
VGGish + 2AP | X 0.572 | 0.921 0.643 | 0.483
VGGish + 2AP | v/ 0.627 | 0.94 0.663 | 0.532

Some key insights:
- Proposed model outperforms other models on almost all audio events across different SNR
- Most improvement observed on events like ‘Bass drum’, "bus’, "double bass’, ‘cowbell’

- Atrous model outperforms proposed on ‘gong’, chime’, ‘'meow’. Indicates atrous models is
better at detecting audio events whose energy is spread wide in the temporal domain
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Conclusion

Two step attention pooling helps in learning features to better discriminate
between sound events

Both in clean and noisy settings
Makes training stable

Improves localisation of the audio eventin T-F

Self-supervised auxiliary tasks can improve network performance in noisy settings

Appropriate auxiliary task: reconstruction of input T-F representation
Right contribution of auxiliary task

Most benefit in SNR 10 dB
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Datasets Real world

Training data does not represent inference distribution o o
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Current sound event detection models lose performance in noisy setting



Sound event detection in wild

{1} AudioSet

Applications with lot of background noise

Training data does not represent inference distribution Datasets Real world

nd event detection models lose performance in noisy setting O oD



